伺服电机的普遍的问题和维修方法

伺服电机的普遍的问题和维修方法

发布时间:2023-09-29 22:32:39   来源:博亿堂娱乐官方网站
  • 伺服系统是机电产品中的重要环节,它能提供顶配水平的动态响应和扭矩密度,所以拖动系统的发展的新趋势

  伺服系统是机电产品中的重要环节,它能提供顶配水平的动态响应和扭矩密度,所以拖动系统的发展的新趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。为实现伺服电机的更好性能,就必须对伺服电机的一些使用特点有所了解。

  客户在一些机械上使用伺服电机时,经常会发生噪声过大,电机带动负载运转不稳定等现象,出现此问题时,许多使用者的第一反应就是伺服电机质量不好,因为有时换成步进电机或是变频电机来拖动负载,噪声和不稳定现象却反而小很多。表面上看,确实是伺服电机的原故,但我们仔细分析伺服电机的工作原理后,会发现这种结论是完全错误的。

  交流伺服系统包括:伺服驱动、伺服电机和一个反馈传感器(一般伺服电机自带光学偏码器)。所有这些部件都在一个控制闭环系统中运行:驱动器从外部接收参数信息,然后将一定电流输送给电机,通过电机转换成扭矩带动负载,负载根据它自己的特性进行动作或加减速,传感器测量负载的位置,使驱动装置对设定信息值和实际位置值作比较,然后通过改变电机电流使实际位置值和设定信息值保持一致,当负载突然变化引起速度变化时,偏码器获知这种速度变化后会马上反应给伺服驱动器,驱动器又通过改变提供给伺服电机的电流值来满足负载的变化,并重新返回到设定的速度。交流伺服系统是一个响应非常高的全闭环系统,负载波动和速度较正之间的时间滞后响应是非常快的,此时,真正限制了系统响应效果的是机械连接装置的传递时间。

  举一个简单例子:有一台机械,是用伺服电机通过V形带传动一个恒定速度、大惯性的负载。总系统需要获得恒定的速度和较快的响应特性,分析其动作过程。

  当驱动器将电流送到电机时,电机立即产生扭矩;一开始,由于V形带会有弹性,负载不会加速到像电机那样快;伺服电机会比负载提前到达设定的速度,此时装在电机上的偏码器会削弱电流,继而削弱扭矩;随着V型带张力的持续不断的增加会使电机速度变慢,此时驱动器又会去增加电流,周而复始。

  在此例中,系统是振荡的,电机扭矩是波动的,负载速度也随之波动。其结果当然会是噪音、磨损、不稳定了。不过,这都不是由伺服电机引起的,这种噪声和不稳定性,是来源于物理运动装置,是由于伺服系统反应速度(高)与机械传递或者反应时间(较长)不相匹配而引起的,即伺服电机响应快于系统调整新的扭矩所需的时间。

  (1)增加机械刚性和降低系统的惯性,减少物理运动部位的响应时间,如把V形带更换成直接丝杆传动或用齿轮箱代替V型带;

  (2)降低伺服系统的响应速度,减少伺服系统的控制带宽,如降低伺服系统的增益参数值。

  当然,以上只是噪声、不稳定的原因之一,针对不同的原因,会有不同的处理方法,如由机械共振引起的噪声,在伺服方面可采取共振抑制,低通滤波等方法,总之,噪声和不稳定的原因,大多数都不会是由于伺服电机本身所造成。

  1、在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量发展要求来具体选择具有合适惯量大小的电机。

  2、在调试时(手动模式下),正确设定惯量比参数是充分的发挥机械及伺服系统最佳效能的前题,此点在要求高速高精度的系统上表现由为突出(台达伺服惯量比参数为1-37,JL/JM)。这样,就有了惯量匹配的问题!

  角加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽可能小。

  2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM+电机轴换算的负载惯性动量JL

  负载惯量JL由(以工具机为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。

  传动惯量对伺服系统的精度,稳定性,动态响应都有影响,惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。

  衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。例如,CNC中心机通过伺服电机作高速切削时,当负载惯量增加时,会发生:

  ②当JL=3×JM,则马达的可控性会些微降低,但对平常的金属切削不会有影响(高速曲线切削一般建议JL≦JM);

  不同的机构动作及加工质量发展要求对JL与JM大小关系有不同的要求,惯性匹配的确定应该要依据机械的工艺特点及加工质量发展要求来确定。

  伺服电机因为长期连续不断使用或者使用者操作不当,会经常发生电机故障,维修又相对复杂的。小编收集了伺服电机发生的13种常见的故障问题的维修方法,供大家学习借鉴。

  伺服电机是一个典型闭环反馈系统,减速齿轮组由电机驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动电机正向或反向地转动,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于为0,进而达到使伺服电机精确定位与定速的目的。

  1、只是有2~4个极小火花.这时若换向器表面是平整的.大多数情况可不必修理;

  3、有4个以上的极小火花,而且有1~3个大火花,则不必拆卸电枢,只需用砂纸磨碳刷换向器;

  4、假如慢慢的出现4个以上的大火花,则需要用砂纸磨换向器,而且必须把碳刷与电枢拆卸下来.换碳刷磨碳刷。

  1、换向器表面明显地不平整(用手能触觉)或电机运转时火花如第四种情况。此时需拆卸电枢,用精密机床加工转换器;

  2、基本平整,只是有极小的伤痕或火花,如第二种情况l口1以用水砂纸手工研磨在不拆卸电枢的情况下研磨。研磨的顺序是:先按换向器的外圆弧度,加工一个木制的工具,将几种不同粗细的水砂纸剪成如换向器一样宽的长条,取下碳刷(请注意在取下的碳刷的柄上与碳刷槽上做记号,确保安装时不致左右换错)用裹好砂纸的木制工具贴实换向器,用另一只手按电机旋转方向,轻轻转动轴换向器研磨。伺服电机维修使用砂纸粗细的顺序先粗后细当一张砂纸瞎得不能用后,再换另较细的砂纸,直到用完最细的水砂纸(或金相砂纸)。

  带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:

  1)用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;

  4)一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系;

  5)来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。

  绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。目前很实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下:

  1)将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳;

  2)用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;

  3)用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机电角度初始相位的EEPROM中;

  在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子接触不良,如螺钉松动等;当窜动发生在由正方向运动与反方向运动的换向瞬间时,一般是由于进给传动链的反向问隙或伺服驱动增益过大所致。

  大多发生在起动加速段或低速进给时,一般是由于进给传动链的润滑状态不良,伺服系统增益低及外加负载过大等因素所致。尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢。

  机床高速运行时,可能会产生振动,这时就会产生过流报警。机床振动问题一般属于速度问题,所以应寻找速度环问题。

  伺服电机从额定堵转转矩到高速运转时,发现转矩会突然降低,这时因为电动机绕组的散热损坏和机械部分发热引起的。高速时,电动机温升变大,因此,正确使用伺服电机前一定要对电机的负载进行验算。

  当伺服轴运动超过位置允差范围时(KNDSD100出厂标准设置PA17:400,位置超差检验测试范围),伺服驱动器就会出现“4”号位置超差报警。根本原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等。

  数控系统到伺服驱动器除了联结脉冲+方向信号外,还有使能控制信号,一般为DC+24V继电器线圈电压。伺服电动机不转,常用诊断方法有:检查数控系统是否有脉冲信号输出;检查使能信号是否接通;通过液晶屏观测系统输入/出状态是不是满足进给轴的起动条件;对带电磁制动器的伺服电动机确认制动已经打开;驱动器有故障;伺服电动机有故障;伺服电动机和滚珠丝杠联结联轴节失效或键脱开等。

  在现场的实际应用中,我们会在安装上遇到很多问题,包括机械方面和电气方面的,如果不注意或是做的不规范,都会影响编码器的正常使用和寿命,以下的指导说明在安装上做了详细的说明,更能有助于我们的应用体验。

  每种电气接口有各自的特点,也有不同的波特率和传输距离,能够准确的通过现场具体的应用环境来选择,实际传输距离与传输速率、编码器及通信线缆的安装干扰环境、接地、线缆选材等有很大关系。

  编码器的导线要根据参数表的电气说明来连接,不使用的导线应单独绝缘包扎或增加绝缘套,防止因与其他信号或电源线短接而损坏编码器。

  编码器电气接线必须在完全断电的情况下进行,带电拔插连接头或电缆,极易损坏编码器。

  供电电源电压必须稳定而波动不大,不要与高干扰元件(如变频器、电磁阀、接触器)共用电源,也能够正常的使用滤波电源。

  (2)加工设施上选择耐油污、冷却液、切削碎片的电缆,避免从电缆接插线和编码器外壳渗透进入;

  编码器通讯电缆在布线.通讯电缆必须远离电机、变压器、变频器等严重磁场干扰设备;

  2.通讯电缆必须与电源电缆、大功率电缆及高噪电缆分开铺设,最好使用屏蔽良好的金属电缆管套;

  5.电缆要合理布线,避免预留电缆过长,造成线.为避免耦合干扰,应最好能够降低信号电缆与功率电缆平行走线.电缆应尽量安排在距离金属部件近的位置,例如控制柜面板、横梁和金属导轨等;

  编码器在现场安装时,不能与变频器、变压器、电磁阀等高干扰源设备装在一起,保持10cm的间距,或是加装金属隔板来隔离。

  与编码器通讯的模块,在电气柜内安装时,不能与变频器、接触器等高干扰源元件或是频繁开断的开关元件安装在一起,保持3cm的间距,或是加装金属隔板来隔离。

  电缆的屏蔽层应在信号接收端作单端接地,防止两个接地点之间的漏电流损坏电缆;

  如果电缆的屏蔽线不能够达到很好的接地保护,需要连接一根单独的接地线来做屏蔽;

  接地长距离连接时,需要在产品外壳和接地点之间添加黄绿线,作为等电势补偿线;

  屏蔽电缆必须在两端连接电气元件的金属外壳(编码器或者电柜),并确保正确连接(大面积接触金属表面);

  以上的安装指导说明供各位在现场安装和维护工作中作为参考,希望能有助于大家提升工作效率,尽早地预防故障的发生,保障编码器的正常运行。

  关键字:编辑:什么鱼 引用地址:伺服电机的普遍的问题和维修方法上一篇:西门子PLC之S7-1500冗余配置实践

  1.不用伺服驱动器,没有特别好的办法,可以用万用表两两测量一下相间的电阻,应该大致相等。 如果手头有可调电压的直流电源,那么把电压调到10几伏,正极接电机一相,负极接剩下的两相, 那么伺服电机应该会转至一个固定的角度。类似的,换一相接正极,电机应该会转至另外一个固定的角度。电压具体多少伏合适从低往高逐渐尝试。 2.给编码器供上电(供电电压要符合编码器要求),用手转动电机,同时用示波器看A.B.Z的波形,有脉冲一般就没问题。 以上内容均根据学员实际在做的工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。

  伺服电机式液位计基于浮力平衡的原理,由微伺服驱动器体积较小的浮子,能精确地测出液位等参数。主要使用在在轻油品的高精度测量中,使用于平静的轻质无腐蚀性液体。 伺服电机式液位计一直被广泛地用于储罐液位的高精确度测量,因为它是一种多功能仪表,既可以测量液位也可以测量界面、密度和罐底等参数。 当液位计工作时,浮子作用于细钢丝上的重力在外轮鼓的磁铁上产生力矩,从而引起磁通量的变化。轮鼓组件间的磁通量变化导致内磁铁上的电磁传感器(霍尔元件)的输出电压信号发生明显的变化。其电压值与储存于CPU中的参考电压相比较。当浮子的位置平衡时,其差值为零。当被测介质液位变化时,使得浮子浮力发生改变。其结果是磁耦力矩被改变,使得带有温度补偿的霍尔元件的输出电

  伺服系统是自动化生产项目里的常见工具,各类机械手之所以可以灵活快速精准的运动,其背后都少不了伺服系统的支持。毕竟,机械手的关节可活动处,都是伺服电机在运动。伺服电机可以做的很小,尤其是一体式伺服被开发出来以后,它们能够被集成到空间狭小的项目中,方便与现有设备一起工作。那么,我们在使用伺服电机的同时,都该注意些什么事项呢?简单的来说说: 1、确保本产品的操作是由专业的工作人员来完成。毕竟这样的一个东西的技术上的含金量是比较高的,构造也比较精密,如果是非专业技术人员来操作,有可能出现损坏设备的情况。 2、接线和检查时,需要在确保断电5分钟后进行。这就是确保电机彻底失去动力源,防止电机偷转。试想一下,如果伺服还在转动,你去用手触碰,3000转每分钟

  在卷筒流水线的板带生产企业中,如扎钢、铝铂、卷筒纸等,其裁切系统,许多企业基本上还在沿用以前的直流或交流变频组成的闭环控制管理系统,其裁切精度虽能达到基本的要求,但往往不是很高,跟着社会的发展,生产企业精益求精,对提高自身的品牌形象也日显重要,同时也满足了客户对产品慢慢的升高的要求。 系统原理 图1:康尔达公司的交流伺服定剪系统。 假设要裁切的长度为S,主动辊的周长为L,主辊转过的圈数N(或者说角度),则S=LN,这是一个线性方程,也即S和N成正比,假设减带机齿轮的变比为K,则可求出S和电机转过圈数X,S=L*X/K。此式说明S和X仍为一个线性方程,为此要取得需要的长度S,只需控制住电机转过的圈数。在原系

  1. 解决:keil报错invalid redeclaration of type name s32 答案:一般在Target Options C/C++选项卡里的Include Paths 里要添加几个固定的头文件路径,rinc 是头文件路径问题,KEIL只要有一个头文件找不到,就会自已从本身的INC文件夹找头文件,结果就会出现以上错提示。把老版的头文件改为STM32F10X.H. 新的库已经把F.MAP.TYPE

  在工控领域,自动化设备早已成为了标准化的解决方案,不断地推动着工业生产水平,安全性能以及能源效率的快速的提升。作为一家在工厂和机械工程及工业领域的主要厂商,TE设计和制造用于连接和保护电源、数据和信号流的系列新产品。面对新一轮的工业革命风暴,TE也将提供有利于工厂数字化的创新型解决方案,助力“互联网+工厂”模式的完美落地。 优秀的产品需要有出色的销售经营渠道与之相搭配,TE与全球领先的互连产品分销商、创立于1974年的Heilind Electronics(赫联电子)建立了良好的合作伙伴关系,借由Heilind遍布于世界各地的分销机构,无论你身在何处,TE都可以在灵活性、可靠性和交货时间方面响应您的一切需求。

  1引言 本文主要探讨了在电流检测中常遇见的电流互感器饱和、副边电流下垂的问题,并且介绍了电流检测电路的实现方法。 2电流检测电路的实现 电流检测电路的实现方法主要有两类:电阻检测(resistivesensing)和电流互感器(currentsensetransformer)检测。在电流环的控制电路中,电流放大器通常选择较大的增益,其好处是可以再一次进行选择一个较小的电阻来获得足够的检测电压,而检测电阻小损耗也小。但是在实际电路设计时,特别在设计大功率、大电流电路时采用电阻检测的方法并不理想,因为检测电阻损耗大,达数瓦,甚至十几瓦;而且特别难找到几百毫欧或几十毫欧那么小的电阻。 电阻检测有两种,如图1、图2所示。

  探讨 /

  频谱分析仪故障现象除了常见的开机启动显示故障还有一大故障频谱分析仪失锁故障安泰维修凭借多年维修经验分享改故障该如何查找修复: 失锁现象通常表现为信号频率偏离设定位置,或看不到信号或携带明显大幅度寄生信号。由于频谱分析仪本振电路复杂,涉及到参考环板、频率合成板、微波驱动板、窄带中频板、YTO、本振倍频放大组件、定向耦合器等电路及微波件。必须首先确认是那个电路单元出现故障。 分析过程:频谱分析仪的本振信号源从自由振荡式发展到频率合成式,因此首先分别输入2GHz和6GHz信号,如果2GHz处失锁6GHz处不失锁,说明是第一本振正常第二本振失锁;如果两个频点均失锁可能为第一本振失锁或第一、第二本振均失锁。原理图如下: (1)判

  直播回放: 国产芯 - 先楫800MHz RISC-V MCU高能秀,岂止控4只伺服电机

  Microchip 喊你快来打造你的理想型单片机,智能门铃、百元京东卡等【80份】好礼等你赢!

  报名赢【挂灯、浴巾】等好礼|TI MSPM0家用电器和电机控制应用详解

  在使用usb连接器时,不能将手伸向插座接口,以及将金属物usb接口,以免易引起电击等危险事故。所以在usb连接器每次用完后,还需要注意 ...

  IN310 618 是InPlay 的 SwiftRadioTM SoC产品系列中的一款产品,它具有用户自定义的专有协议栈,集成了 2 4GHz 频段的射频收发无线电 ...

  近些年,曝出的农残果蔬、激素肉等事件慢慢的变多,农残、激素、食品添加剂、各类化学保鲜剂等过度使用,给我们的饮食健康造成巨大的危害和潜 ...

  迎宾器又称感应门铃,用于小型店铺、便利店自动开启迎宾防盗作用的电子科技类产品。它的前身是电子防盗报警器;刚开始人们是用它来防盗的,但后来 ...

  FP8208A 是一款开关模式降压型锂电池充电管理芯片,输入电压应用适合 5V 交流适配器,可对单节锂离子电池进行定电流或是恒压充电,其最 ...

  嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云: