电机如何旋转 电机的旋转原理是什么

发布时间:2024-03-27 10:34:14   来源:博亿堂娱乐官方网站

  世界上功率消耗量的近一半是由电机消耗,因此在解决世界能源问题上,电机的高效率化被称为是最有效的措施。

  一般情况下指将磁场内电流流通产生的力转变为旋转动作,在广义范围内还包括直线动作。

  按电机驱动的电源种类,可分为DC电机和AC电机。而 根据电机旋转原理,大致可分为以下几种。(特殊电机除外)

  首先,为便于后续电机原理说明,我们来回顾一下有关电流、磁场和力的基本定律/法则。虽然有一种怀旧的感觉,但如果平时不常使用磁性元器件,就很容易忘记这些知识。

  例如,当考虑到旋转角度仅为θ的状态时,与b和d成直角作用的力为sinθ,因此a部分的转矩Ta由以下公式表示:

  该公式不仅适用于矩形,也适用于圆形等其他常见形状。电机是利用了该原理。

  在带旋转轴的永久磁铁周围,①旋转磁铁(使产生旋转磁场),②则根据 N极与S极异极相吸、同级相斥原理,③带旋转轴的磁铁将旋转。

  导线中流过电流使其周围产生旋转磁场(磁力)从而磁铁旋转,实际上与此是一样的动作状态。

  另外,将导线绕成线圈状,则磁力被合成,形成大的磁场通量(磁通量),产生N极和S极。

  在此,作为旋转电机的实际方法,介绍利用三相交流和线圈制造旋转磁场的方法。

  如上所述,缠绕铁芯的线°配置U相线圈、V相线圈、W相线圈,电压高的线圈产生N极,电压低的线圈产生S极。

  各相位按正弦波变化,因此各线圈产生的极性(N极、S极)和其磁场(磁力)将发生变化。

  此时,单看产生N极的线圈,按U相线圈→V相线圈→W相线圈→U相线圈依次变化,从而发生旋转。

  下图中给出了步进电机、有刷直流(DC)电机、无刷直流(DC)电机这三种电机的大概构造和对比。这些电机的基本组成部件主要为线圈、磁铁和转子,另外由于种类不同,又分线圈固定型和磁铁固定型。

  以下为与示例图相关的结构说明。由于更细致地划分的话,还有几率存在其他结构,因此请理解本文中介绍的是大框架下的结构。

  这里的有刷直流电机的磁铁在外侧固定,线圈在内侧旋转。由电刷和换向器(commutator)负责向线圈供电和改变电流方向。

  由于马达电机种类不同,即使基本组成部件相同其结构也有不同。具体将在各部分进行详细说明。

  下面是经常在模型中使用的有刷直流电机的外观,以及普通的两极(2个磁体)三槽(3个线圈)型电机的分解示意图。也许很多人都有拆卸电机、拿出磁铁的经验。

  可以看到有刷直流电机的永磁体是固定的,有刷直流电机的线圈可以绕内部中心旋转。固定侧称为“定子”,旋转侧称为“转子”。

  旋转中心轴的外围有三个换向器(用于电流切换的弯曲金属片)。为了尽最大可能避免彼此接触,换向器之间间隔120°(360°÷3枚)配置。换向器随着轴的旋转而旋转。

  一个换向器连接有一个线圈端和另一个线圈端,并且三个换向器和三个线圈作为电路网形成一个整体(环形)。

  两个电刷被固定在0°和180°处,以便与换向器接触。外部直流电源与电刷相连接,电流按电刷→换向器→线圈→电刷的路径流动。

  线圈A在最上方,将电源连接到电刷,设左侧为(+),右侧为(-)。大电流从左电刷通过换向器流到线圈A。这是线圈A的上部(外侧)变为S极的结构。

  而由于线从左电刷流向线圈B和线圈C的方向与线圈A相反,因此线圈B和线圈C的外侧变为弱N极(在图中用略小字母表示)。

  从③到④上侧的线圈持续受到向左动的力,下部的线圈持续受到向右动的力,并继续逆时针方向旋转

  在线°旋转到③和④状态下,当线圈位于中心水平轴上方时,线圈的外侧变为S极;当线圈位于下方时变为N极,并且反复该运动。

  换句话说,上侧线圈反复受到向左动的力,下侧线圈反复受到向右动的力(均为逆时针方向)。这使转子始终逆时针旋转。

  如果将电源连接到相对的左电刷(-)和右电刷(+),则线圈中会产生方向相反的磁场,因此施加到线圈上的力的方向也相反,变为顺时针旋转。

  此外,当断开电源时,有刷电机的转子会因没有了使之继续旋转的磁场而停止旋转。

  左侧是用来旋转光盘播放设备中的光盘的主轴电机示例。共有三相×3共9个线圈。右侧是FDD设备的主轴电机示例,共有12个线)。线圈被固定在电路板上,并缠绕在铁芯上。

  在线圈右侧的盘状部件是永磁体转子。外围是永磁体,转子的轴插入线圈的中心部位并覆盖住线圈部分,永磁体围绕在线圈的外围。

  该内部结构简图是结构很简单的2极(2个磁体)3槽(3个线圈)电机示例。它类似于极数和槽数相同的有刷电机结构,但线圈侧是固定的,磁体可以旋转。当然,没有电刷。

  在这种情况下,线圈采用Y形接法,使用半导体元件为线圈供给电流,根据旋转的磁置来控制电流的流入和流出。在该示例中,使用霍尔元件来检测磁体的位置。霍尔元件配置在线圈和线圈之间,根据磁场强度检测产生的电压并用作位置信息。在前面给出的FDD主轴电机的图像中,也能够正常的看到在线圈和线圈之间有用来检测位置的霍尔元件(线圈的上方)。

  霍尔元件是众所周知的磁传感器。可将磁场的大小转换为电压的大小,并以正负来表示磁场的方向。下面是显示霍尔效应的示意图。

  霍尔元件利用了“当电流IH流过半导体并且磁通B与电流成直角穿过时,会在垂直于电流和磁场的方向上产生电压VH”的这种现象,美国物理学家Edwin Herbert Hall(埃德温·赫伯特·霍尔)发现了这种现象并将其称为“霍尔效应”。产生的电压VH由下列公式表示。

  如公式所示,电流越大,电压越高。常利用这个特性来检测转子(磁体)的位置。

  下面将按照步骤①~⑥来说明无刷电机的旋转原理。为了易于理解,这里将永磁体从圆形简化成了矩形。

  ①在三相线点钟方向上,线点钟方向上,线极永磁体的N极在左侧,S极在右侧,并能旋转。

  使电流Io流入线,以在线圈外侧产生S极磁场。使Io/2电流从线流出,以在线圈外侧产生N极磁场。

  在对线的磁场进行矢量合成时,向下产生N极磁场,该磁场是电流Io通过一个线倍大小,与线倍。这会产生一个相对于永磁体成90°角的合成磁场,因此能产生最大扭矩,永磁体顺时针旋转。

  ②在旋转了30°的状态下,电流Io流入线,使线中的电流为零,使电流Io从线流出。

  线的外侧变为S极,线的外侧变为N极。当矢量合成时,产生的磁场是电流Io通过一个线)倍。这也会产生相对于永磁体的磁场成90°角的合成磁场,并顺时针旋转。

  当根据旋转位置减小线的流入电流Io、使线的流入电流从零开始增加、并使线的流出电流增加到Io时,合成磁场也顺时针旋转,永磁体也继续旋转。

  ※假设各相电流均为正弦波形,则此处的电流值为Io × sin(π⁄3)=Io × √3⁄2 通过磁场的矢量合成,得到总磁场大小为一个线 倍。当各相电流均为正弦波时,无论永磁体的位置在哪,矢量合成磁场的大小均为一个线倍,并且磁场相对于永磁体的磁场成90°角。

  ③在继续旋转了30°的状态下,电流Io/2流入线流入线,电流Io从线流出。

  线的外侧变为S极,线的外侧也变为S极,线的外侧变为N极。当矢量合成时,产生的磁场是电流Io流过一个线倍(与①相同)。这里也会产生相对于永磁体的磁场成90°角的合成磁场,并顺时针旋转。

  这样,如果不断根据永磁体的位置依次切换流入线圈的电流,则永磁体将沿固定方向旋转。同样,如果使电流反向流动并使合成磁场方向相反,则会逆时针旋转。

  下图连续显示了上述①~⑥每个步骤的每个线圈的电流。通过以上介绍,应该能理解电流变化与旋转之间的关系了。

  步进电机是一种可以与脉冲信号同步准确地控制旋转角度和转速的电机,步进电机的也称为“脉冲电机”。由于步进电机无需使用位置传感器仅通过开环控制就可以实现准确的定位而被大范围的使用在需要定位的设备中。

  在外观示例中,给出的是HB(混合)型和PM(永磁)型步进电机的外观。在中间的结构图给出的也是HB型和PM型的结构。

  步进电机是线圈固定、永磁体旋转的结构。右侧的步进电机内部结构概念图是使用两相(两组)线圈的PM电机示例。在步进电机基本结构示例中,线圈配置在外侧,永磁体配置在内侧。线圈除了两相外,还有三相和五相等相数较多的类型。

  有些步进电机具有其他不同的结构,但是为便于介绍其工作原理而在本文中给出了基本结构的步进电机。通过本文希望了解步进电机基本上采用线圈固定、永磁体旋转的结构。

  下面使用下图来介绍步进电机的基本工作原理。这是上面两相双极型线圈每一相(一组线圈)的励磁示例。该图的前提是状态从①到④变化。线圈分别由线和线组成。另外,电流箭头表示电流流动方向。

  通过电子电路按照上述①至④的顺序切换流过线圈的电流,即可使步进电机旋转。在该示例中,每一次开关动作会使步进电机旋转90°。另外,当使电流不断流过某一线圈时,能保持停止状态并使步进电机具有保持转矩。顺便提一下,如果将流过线圈的电流顺序反过来,则可以使步进电机反向旋转。

  电机在我们日常生活中的几乎每个部分发挥着作用。它们驱动洗碗机和洗衣机,使室内变得凉爽,并且对于现代交通工具更是必不可少。无刷直流 (BLDC)电机已成为许多匀速或变速的高可靠性中高档系统的选择。借助几个霍尔效应传感器和一个控制器,BLDC电机变得相对容易控制。如今,BLDC 电机系统已十分常见,但是,大多数系统仍使用传感器来控制电机。为降低BLDC系统的成本并提高可靠性,许多设计人员希望除去传感器。无传感器系统已出现相当长一段时间,但在过去,它们需要昂贵的控制器才能运行除去传感器所需的算法。数字信号控制器(DSC) 无传感器BLDC控制依靠BLDC电机的特性来计算转子位置,并在此位置使电机在适当的时间换向。为了解释其工作原理

  很多人已经发现了变频器对电机损伤的现象。例如,某水泵厂,近两年来,他的用户频繁报告水泵在保修期内发生损坏的现象。而过去,这个水泵厂的产品质量十分可靠。经过调查,发现这些损坏的水泵都是用变频器驱动的。 变频器的出现为工业自动化控制、电机节能带来了革新。工业生产里几乎离不开变频器,即使在日常生活中,电梯、变频空调也成为必不可少的部分,变频器慢慢的开始渗入到生产、生活的各个角落。然而,变频器也带来了许多前所未有的困扰,其中损伤电机就是最典型的现象之一。 很多人已经发现了变频器对电机损伤的现象。例如,某水泵厂,近两年来,他的用户频繁报告水泵在保修期内发生损坏的现象。而过去,这个水泵厂的产品质量十分可靠。经过调查,发现这些损坏的水泵

  的损伤有哪些 /

  摘要:分析了由MCU和双向晶闸管开关来控制通用电动机转速的原理,提出了一种提高电动机效率的设计的具体方案,给出了该实现方案的硬件电路和软件程序框图,同时给出了实验仿真的结果。 关键词:微控制器;晶闸管开关;电路板 1引言 在日常生产与生活中,大量电动机都以规定的速度和功率去拖动各种机械。而在军事上,很多应用往往要求旋转天线在各种条件下都要保持匀速转动,这就要求在不同的情况下,电动机能相应调整工作速度,以保持恒定的速度。要实现这一功能, 最常用的方法是对电动机的转速进行调节。改变直流电动机的电枢或交流电动机的定子电压,都可以在一定的范围里改变转速;也可用双向晶闸管交流开关或直接选用模拟控制的通用电动机驱动器来取代笨重的电动机

  Power Integrations推出采用BridgeSwitch IC作为驱动的单相无刷直流电机精调控制软件 美国加利福尼亚州圣何塞,深耕于高压集成电路高能效功率变换领域的知名公司 Power Integrations 今日发布Motor-Expert软件,这是一款嵌入C语言应用程序、库及控制GUI的软件。使用该公司BridgeSwitch无刷直流(BLDC)电机驱动器IC的设计人员借助该软件可对单相电机的运行性能进行精确的控制和调整。无刷直流电机大范围的使用在现代高效家电应用,如家电中的压缩机、风扇和水泵,以及吊扇和室内空调系统。 无刷直流电机通常使用三个绕组(多相),需要六个高压IGBT或MOSFET才能运行。Motor

  精调控制软件 /

  步进电机应用广泛, 例如打印机、磁盘驱动器、玩具、汽车雨刷、手机震动、机械夹具、刻录机等各种机械控制场合 一些概念: 拍数N 定子控制绕组每改变一次通电方式,即为一拍 一个磁场通电周期是 A-B-C-D-A 完成一个磁场周期性变化所需脉冲数, 也指电机转过一个齿距角所需脉冲数,用N表示 拍数又等于相数的1倍或2倍, 以四相电机为例, 有4相4拍, A-B-C-D-A... 4相8拍, A-AB-B-BC-C-CD-D-DA-A... 齿距角θz 一个通电循环周期(比如4拍)转子转过一个齿距角 齿距角又等于360除以转子齿数Z, θz=360/Z 步距角θs 步距角,即在没有减速齿轮的情况下,对于一个脉冲信号,转子所转过的机械角度.

  控制,正转反转等 /

  O 引言 目前 交流调速 电气传动慢慢的变成了电气调速传动的主流。随着现代交流电机调速控制理论的发展和电力电子装置功能的完善,特别是微型计算机及大规模集成电路的发展,交流电机调速取得了突破性的进展。 恒压频比(U/F=常数)的控制方式是转速开环控制,无需速度传感器,控制电路简单,负载可以是通用标准异步电动机,所以通用性强,经济性好,是目前通用变频器产品中使用较多的一种控制方式,普遍应用在风机、泵类的调速系统中。 电压空间矢量法(SVPWM),也叫“磁链跟踪控制”,和经典的SPWM控制着眼于输出电压尽量接近正弦波不同,它是从电动机的方面出发,着眼于如何使电机获得幅值恒定的圆形旋转磁场。 本系统模块设计了以T

  变频调速系统设计 /

  中国储能网讯 :5月19日至21日,“第八届中国国际储能大会”在深圳隆重召开, 来自中国、美国、德国、英国、加拿大、西班牙、日本、韩国、澳大利亚等国和地区1500余位政府机构、科研院所、行业组织、电力公司、新能源项目单位、系统集成商等代表出席本次大会。 清华大学能源互联网创新研究院大数据平台研究室主任高峰在“能源互联网与多能互补专场”,发表了题为“储能系统与发电机组联合调频技术探讨研究与前景分析”的精彩演讲。 演讲内容如下: 高峰 :大家下午好! 我今天报告的题目是“储能系统与发电机组联合调频技术探讨研究与前景展望”。 去年我在苏州的储能会议上做了类似的报告,当时我提了一点,一个成熟有效率的电力现货市场

  1 引 言 目前,随着MEMS技术的快速的提升和各国在微系统领域投资力度的加大,各种各样的形式的微能源层出不穷。在不同的微器件和微系统中,如何充分合理地利用这些微能源为负载供应能量是亟待解决的问题之一,比如在工业自动控制,植入式医疗装置、无线网络传感器等领域,人为地定时换能加电,不仅浪费财力和物力,同时也造成病人的痛苦和设备的损耗。本文针对微能源输出功率极小但连续的特点,设计出一直新型的微功耗功智能电源管理控制电路,以把连续微量的电能加以储藏,在使用时再以较大功率间歇性输出以达到适用的目的。该文以压电振动式发电机为例,对系统电路设计进行说明。 2 压电振动式发电机的原理和输出特性 根据能量转换机理的不同,振动式发电机可以分成

  组运行技术问答 热工仪表及控制 (时海刚主编)

  组运行技术问答:电气设备与运行 (张嵩)

  【瓜分2500元红包】 票选DigiKey\智造万物,快乐不停\创意大赛人气作品TOP3!

  瑞萨率先在业内推出采用自研CPU内核的 通用32位RISC-V MCU

  RISC-V MCU为研发人员带来低功耗、高性能的全新选择以及全面工具链支持2024 年 3 月 26 日,中国北京讯 - 全球半导体解决方案供应 ...

  一段时间以来,许多工程师和研发人员一直在讨论嵌入式处理器架构的未来。虽然嵌入式芯片架构市场上有明确的引领者,但该行业正在快速扩张, ...

  微波炉是一种用微波加热食品的现代化烹调灶具,他的特点是方便快速,所以现在微波炉慢慢的变成了了一种居家必备的家用电器。有一些微波炉的电脑 ...

  OB3353是一款具有成本效益的LED驱动器,大范围的应用于 LCD显示器和LCD TV背光,随着国际市场芯片缺货及疫情等外部因素的影响下,加速了半导 ...

  65W PD快充方案不仅能支持手机的大功率快速充电还能支持20V输出,可以为电脑充电,具有通用性好的优点,搭配氮化镓,体积能做到很小 ...

  CS5266低成本替代台湾安格AG9311typec转HDMI+PD+U3金典三合一拓展坞方案

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科